Haotian Zhang

Other people with similar names: Haotian Zhang

Unverified author pages with similar names: Haotian Zhang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Reasoning under Uncertainty: Efficient LLM Inference via Unsupervised Confidence Dilution and Convergent Adaptive Sampling
Zhenning Shi | Yijia Zhu | Yi Xie | Junhan Shi | Guorui Xie | Haotian Zhang | Yong Jiang | Congcong Miao | Qing Li
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) excel at complex reasoning tasks but often suffer from overconfidence and computational inefficiency due to fixed computation budgets and miscalibrated confidence estimates. We present a novel framework for computationally efficient, trustworthy reasoning under uncertainty, introducing two complementary techniques: Diversity-Aware Self-Signal Dilution (DASD) and Convergent Adaptive Weighted Sampling (CAWS). DASD operates in an unsupervised manner to dilute overconfident, semantically redundant reasoning paths, thereby producing better-calibrated internal confidence estimates. CAWS dynamically allocates computational resources at inference time by aggregating these signals and terminating computation once answer dominance and stability are achieved. Comprehensive experiments across three reasoning datasets demonstrate that our approach maintains accuracy levels while achieving over 70% reduction in inference cost, surpassing competitive baselines. Our framework provides a scalable, unsupervised solution for reliable and efficient LLM reasoning.