Haoming Huang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Pierce the Mists, Greet the Sky: Decipher Knowledge Overshadowing via Knowledge Circuit Analysis
Haoming Huang | Yibo Yan | Jiahao Huo | Xin Zou | Xinfeng Li | Kun Wang | Xuming Hu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs), despite their remarkable capabilities, are hampered by hallucinations. A particularly challenging variant, knowledge overshadowing, occurs when one piece of activated knowledge inadvertently masks another relevant piece, leading to erroneous outputs even with high-quality training data. Current understanding of overshadowing is largely confined to inference-time observations, lacking deep insights into its origins and internal mechanisms during model training. Therefore, we introduce **PhantomCircuit, a novel framework designed to comprehensively analyze and detect knowledge overshadowing.** By innovatively employing knowledge circuit analysis, PhantomCircuit dissects the function of key components in the circuit and how the attention pattern dynamics contribute to the overshadowing phenomenon and its evolution throughout the training process. Extensive experiments demonstrate PhantomCircuit’s effectiveness in identifying such instances, offering novel insights into this elusive hallucination and providing the research community with a new methodological lens for its potential mitigation. Our code can be found in https://github.com/halfmorepiece/PhantomCircuit.