Haoming Chen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Northeastern Uni at Multilingual Counterspeech Generation: Enhancing Counter Speech Generation with LLM Alignment through Direct Preference Optimization
Sahil Wadhwa | Chengtian Xu | Haoming Chen | Aakash Mahalingam | Akankshya Kar | Divya Chaudhary
Proceedings of the First Workshop on Multilingual Counterspeech Generation

The automatic generation of counter-speech (CS) is a critical strategy for addressing hate speech by providing constructive and informed responses. However, existing methods often fail to generate high-quality, impactful, and scalable CS, particularly across diverse lin- guistic contexts. In this paper, we propose a novel methodology to enhance CS generation by aligning Large Language Models (LLMs) using Supervised Fine-Tuning (SFT) and Di- rect Preference Optimization (DPO). Our ap- proach leverages DPO to align LLM outputs with human preferences, ensuring contextu- ally appropriate and linguistically adaptable responses. Additionally, we incorporate knowl- edge grounding to enhance the factual accuracy and relevance of generated CS. Experimental results demonstrate that DPO-aligned models significantly outperform SFT baselines on CS benchmarks while scaling effectively to mul- tiple languages. These findings highlight the potential of preference-based alignment tech- niques to advance CS generation across var- ied linguistic settings. The model supervision and alignment is done in English and the same model is used for reporting metrics across other languages like Basque, Italian, and Spanish.