Haojian Huang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
DependEval: Benchmarking LLMs for Repository Dependency Understanding
Junjia Du | Yadi Liu | Hongcheng Guo | Jiawei Wang | Haojian Huang | Yunyi Ni | Zhoujun Li
Findings of the Association for Computational Linguistics: ACL 2025

While large language models (LLMs) have shown considerable promise in code generation, real-world software development demands advanced repository-level reasoning. This includes understanding dependencies, project structures, and managing multi-file changes. However, the ability of LLMs to effectively comprehend and handle complex code repositories has yet to be fully explored. To address these challenges, we introduce a hierarchical benchmark designed to evaluate repository dependency understanding(DependEval) for LLMs. The benchmark is based on 2683 repositories collected from real-world websites. It evaluates models on three core tasks: Dependency Recognition, Repository Construction, and Multi-file Editing, across 8 programming languages from actual code repositories. Our evaluation of over 25 LLMs reveals substantial performance gaps and provides valuable insights into repository-level code understanding.