Haofeng Wang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Exploring Hybrid Question Answering via Program-based Prompting
Qi Shi | Han Cui | Haofeng Wang | Qingfu Zhu | Wanxiang Che | Ting Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Question answering over heterogeneous data requires reasoning over diverse sources of data, which is challenging due to the large scale of information and organic coupling of heterogeneous data. Various approaches have been proposed to address these challenges. One approach involves training specialized retrievers to select relevant information, thereby reducing the input length. Another approach is to transform diverse modalities of data into a single modality, simplifying the task difficulty and enabling more straightforward processing. In this paper, we propose HProPro, a novel program-based prompting framework for the hybrid question answering task. HProPro follows the code generation and execution paradigm. In addition, HProPro integrates various functions to tackle the hybrid reasoning scenario. Specifically, HProPro contains function declaration and function implementation to perform hybrid information-seeking over data from various sources and modalities, which enables reasoning over such data without training specialized retrievers or performing modal transformations. Experimental results on two typical hybrid question answering benchmarks HybridQA and MultiModalQA demonstrate the effectiveness of HProPro: it surpasses all baseline systems and achieves the best performances in the few-shot settings on both datasets.