Haocheng Luo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Re-weighting Tokens: A Simple and Effective Active Learning Strategy for Named Entity Recognition
Haocheng Luo | Wei Tan | Ngoc Nguyen | Lan Du
Findings of the Association for Computational Linguistics: EMNLP 2023

Active learning, a widely adopted technique for enhancing machine learning models in text and image classification tasks with limited annotation resources, has received relatively little attention in the domain of Named Entity Recognition (NER). The challenge of data imbalance in NER has hindered the effectiveness of active learning, as sequence labellers lack sufficient learning signals. To address these challenges, this paper presents a novel re-weighting-based active learning strategy that assigns dynamic smoothing weights to individual tokens. This adaptable strategy is compatible with various token-level acquisition functions and contributes to the development of robust active learners. Experimental results on multiple corpora demonstrate the substantial performance improvement achieved by incorporating our re-weighting strategy into existing acquisition functions, validating its practical efficacy. We will release our implementation upon the publication of this paper.