This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
HaoLi
Also published as:
浩 李
Papers on this page may belong to the following people:Hao Li,
Hao Li
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Safety concerns of Multimodal large language models (MLLMs) have gradually become an important problem in various applications. Surprisingly, previous works indicate a counterintuitive phenomenon that using textual unlearning to align MLLMs achieves comparable safety performances with MLLMs aligned with image-text pairs. To explain such a phenomenon, we discover a Visual Safety Information Leakage (VSIL) problem in existing multimodal safety benchmarks, i.e., the potentially risky content in the image has been revealed in the textual query. Thus, MLLMs can easily refuse these sensitive image-text pairs according to textual queries only, leading to unreliable cross-modality safety evaluation of MLLMs. We also conduct a further comparison experiment between textual alignment and multimodal alignment to highlight this drawback. To this end, we construct Visual Leakless Safety Bench (VLSBench) with 2.2k image-text pairs through an automated data pipeline. Experimental results indicate that VLSBench poses a significant challenge to both open-source and close-source MLLMs, i.e., LLaVA, Qwen2-VL and GPT-4o. Besides, we empirically compare textual and multimodal alignment methods on VLSBench and find that textual alignment is effective enough for multimodal safety scenarios with VSIL, while multimodal alignment is preferable for safety scenarios without VSIL.
Safety concerns in large language models (LLMs) have gained significant attention due to their exposure to potentially harmful data during pre-training. In this paper, we identify a new safety vulnerability in LLMs: their susceptibility to natural distribution shifts between attack prompts and original toxic prompts, where seemingly benign prompts, semantically related to harmful content, can bypass safety mechanisms. To explore this issue, we introduce a novel attack method, ActorBreaker, which identifies actors related to toxic prompts within pre-training distribution to craft multi-turn prompts that gradually lead LLMs to reveal unsafe content. ActorBreaker is grounded in Latour’s actor-network theory, encompassing both human and non-human actors to capture a broader range of vulnerabilities. Our experimental results demonstrate that ActorBreaker outperforms existing attack methods in terms of diversity, effectiveness, and efficiency across aligned LLMs. To address this vulnerability, we propose expanding safety training to cover a broader semantic space of toxic content. We thus construct a multi-turn safety dataset using ActorBreaker. Fine-tuning models on our dataset shows significant improvements in robustness, though with some trade-offs in utility. Code is available at https://github.com/AI45Lab/ActorAttack.
With rapid advancement and increasing accessibility of LLMs, fine-tuning aligned models has become a critical step for adapting them to real-world applications, which makes the safety of this fine-tuning process more important than ever. However, recent studies have highlighted a critical challenge: even when fine-tuning with seemingly benign downstream datasets, the safety of aligned LLMs can be compromised, making them more susceptible to malicious instructions. In this paper, we show that fine-tuning datasets often contain samples with safety-degrading features that are not easily identifiable on the surface. These samples can significantly degrade the safety alignment of LLMs during fine-tuning. To address this issue, we propose LARF, a Layer-Aware Representation Filtering method. This method identifies safety-sensitive layers within the LLM and leverages their representations to detect which data samples in the post-training dataset contain safety-degrading features. Experimental results demonstrate that LARF can effectively identify benign data with safety-degrading features. After removing such data, the safety alignment degradation caused by fine-tuning is mitigated.
Large Language Models (LLMs) are susceptible to generating harmful content when prompted with carefully crafted inputs, a vulnerability known as LLM jailbreaking. As LLMs become more powerful, studying jailbreak methods is critical to enhancing security and aligning models with human values. Traditionally, jailbreak techniques have relied on suffix addition or prompt templates, but these methods suffer from limited attack diversity. This paper introduces DiffusionAttacker, an end-to-end generative approach for jailbreak rewriting inspired by diffusion models. Our method employs a sequence-to-sequence (seq2seq) text diffusion model as a generator, conditioning on the original prompt and guiding the denoising process with a novel attack loss. Unlike previous approaches that use autoregressive LLMs to generate jailbreak prompts, which limit the modification of already generated tokens and restrict the rewriting space, DiffusionAttacker utilizes a seq2seq diffusion model, allowing more flexible token modifications. This approach preserves the semantic content of the original prompt while producing harmful content. Additionally, we leverage the Gumbel-Softmax technique to make the sampling process from the diffusion model’s output distribution differentiable, eliminating the need for iterative token search. Extensive experiments on Advbench and Harmbench demonstrate that DiffusionAttacker outperforms previous methods across various evaluation metrics, including attack success rate (ASR), fluency, and diversity.
Large Language Models (LLMs) have achieved impressive results in Machine Translation (MT). However, human evaluations reveal that LLM-generated translations still contain various errors. Notably, feeding the error information back into the LLMs can facilitate self-refinement, leading to enhanced translation quality. Motivated by these findings, we introduce TEaR (Translate, Estimate, and Refine), a systematic LLM-based self-refinement framework aimed at bootstrapping translation performance. Our key results show that: 1) TEaR framework enables LLMs to improve their translation quality relying solely on self-feedback, measured by both automatic metrics and Multidimensional Quality Metrics (MQM) scores; 2) TEaR autonomously selects improvements, ensuring a robust translation quality baseline while outperforming both internal refinement and external feedback methods. Error analysis and iterative refinement experiments show its ability to continuously reduce translation errors and enhance overall translation quality. Our code and data are publicly available at https://github.com/fzp0424/self_correct_mt.
Although large language models (LLMs) have demonstrated remarkable reasoning capabilities, they still face challenges in knowledge-intensive multi-hop reasoning. Recent work explores iterative retrieval to address complex problems. However, the absence of intermediate guidance often leads to inaccurate retrieval and intermediate reasoning errors, leading to incorrect reasoning. To address these, we propose Self-Critique Guided Iterative Reasoning (SiGIR), which uses self-critique feedback to guide the iterative reasoning process. Specifically, through end-to-end training, we enable the model to iteratively address complex problems via question decomposition, while also being able to self-evaluate its intermediate reasoning steps. During iterative reasoning, the model engages in branching exploration and employs self-evaluation to guide the selection of promising reasoning trajectories. Extensive experiments on three multi-hop reasoning datasets demonstrate the effectiveness of our proposed method, surpassing the previous SOTA by 8.6%. Furthermore, our thorough analysis offers insights for future research. Our code, data, and models are available at https://github.com/zchuz/SiGIR-MHQA.
The release of OpenAI’s O1 and subsequent projects like DeepSeek R1 has significantly advanced research on complex reasoning in LLMs. This paper systematically analyzes existing reasoning studies from the perspective of self-evolution, structured into three components: data evolution, model evolution, and self-evolution. Data evolution explores methods to generate higher-quality reasoning training data. Model evolution focuses on training strategies to boost reasoning capabilities. Self-evolution research autonomous system evolution via iterating cycles of data and model evolution. We further discuss the scaling law of self-evolution and analyze representative O1-like works through this lens. By summarizing advanced methods and outlining future directions, this paper aims to drive advancements in LLMs’ reasoning abilities.
Existing multi-objective preference alignment methods for large language models (LLMs) face limitations: (1) the inability to effectively balance various preference dimensions, and (2) reliance on auxiliary reward/reference models introduces computational complexity. To address these challenges, we propose Adaptive Multi-objective Preference Optimization (AMoPO), a novel framework that achieves dynamic balance across preference dimensions. By introducing the multi-objective optimization paradigm to use the dimension-aware generation metrics as implicit rewards, AMoPO aligns LLMs with diverse preferences without additional reward models or reference models. We introduce an adaptive weight assignment mechanism that models the generation space as a Gaussian distribution, allowing dynamic prioritization of preference dimensions. Empirical results demonstrate that AMoPO outperforms state-of-the-art baselines by 28.5%, and the experiments on 7B, 14B, and 32B models reveal the scaling ability of AMoPO. Moreover, additional analysis of multiple dimensions verifies its adaptability and effectiveness. These findings validate AMoPO’s capability to achieve dimension-aware preference alignment, highlighting its superiority. Our codes and datasets are available at https://github.com/Javkonline/AMoPO.
Large reasoning models (LRMs) achieve remarkable performance via long reasoning chains, but often incur excessive computational overhead due to redundant reasoning, especially on simple tasks. In this work, we systematically quantify the upper bounds of LRMs under both Long-Thinking and No-Thinking modes, and uncover the phenomenon of “Internal Self-Recovery Mechanism” where models implicitly supplement reasoning during answer generation. Building on this insight, we propose Adaptive Self-Recovery Reasoning (ASRR), a framework that suppresses unnecessary reasoning and enables implicit recovery. By introducing accuracy-aware length reward regulation, ASRR adaptively allocates reasoning effort according to problem difficulty, achieving high efficiency with negligible performance sacrifice. Experiments across multiple benchmarks and models show that, compared with GRPO, ASRR reduces reasoning budget by up to 32.5% (1.5B) and 25.7% (7B) with minimal accuracy loss (1.2% and 0.6% pass@1), and significantly boosts harmless rates on safety benchmarks (up to +21.7%). Our results highlight the potential of ASRR for enabling efficient, adaptive, and safer reasoning in LRMs.
Large Language Models (LLMs) are increasingly adopted for applications in healthcare, reaching the performance of domain experts on tasks such as question answering and document summarisation. Despite their success on these tasks, it is unclear how well LLMs perform on tasks that are traditionally pursued in the biomedical domain, such as structured information extration. To bridge this gap, in this paper, we systematically benchmark LLM performance in Medical Classification and Named Entity Recognition (NER) tasks. We aim to disentangle the contribution of different factors to the performance, particularly the impact of LLMs’ task knowledge and reasoning capabilities, their (parametric) domain knowledge, and addition of external knowledge. To this end, we evaluate various open LLMs—including BioMistral and Llama-2 models—on a diverse set of biomedical datasets, using standard prompting, Chain-of-Thought (CoT) and Self-Consistency based reasoning as well as Retrieval-Augmented Generation (RAG) with PubMed and Wikipedia corpora. Counter-intuitively, our results reveal that standard prompting consistently outperforms more complex techniques across both tasks, laying bare the limitations in the current application of CoT, self-consistency and RAG in the biomedical domain. Our findings suggest that advanced prompting methods developed for knowledge- or reasoning-intensive tasks, such as CoT or RAG, are not easily portable to biomedical tasks where precise structured outputs are required. This highlights the need for more effective integration of external knowledge and reasoning mechanisms in LLMs to enhance their performance in real-world biomedical applications.
Aspect Sentiment Triplet Extraction (ASTE) is a thriving research area with impressive outcomes being achieved on high-resource languages. However, the application of cross-lingual transfer to the ASTE task has been relatively unexplored, and current code-switching methods still suffer from term boundary detection issues and out-of-dictionary problems. In this study, we introduce a novel Test-Time Code-SWitching (TT-CSW) framework, which bridges the gap between the bilingual training phase and the monolingual test-time prediction. During training, a generative model is developed based on bilingual code-switched training data and can produce bilingual ASTE triplets for bilingual inputs. In the testing stage, we employ an alignment-based code-switching technique for test-time augmentation. Extensive experiments on cross-lingual ASTE datasets validate the effectiveness of our proposed method. We achieve an average improvement of 3.7% in terms of weighted-averaged F1 in four datasets with different languages. Additionally, we set a benchmark using ChatGPT and GPT-4, and demonstrate that even smaller generative models fine-tuned with our proposed TT-CSW framework surpass ChatGPT and GPT-4 by 14.2% and 5.0% respectively.
This paper presents methods for {textbf{SemEval-2025 Task 11}} on text-based emotion detection across three tracks: Multi-label Emotion Detection, Emotion Intensity Prediction, and Cross-lingual Emotion Detection. We apply approaches such as supervised fine-tuning, preference-based reinforcement learning, and few-shot learning to enhance performance. Our combined strategies result in improved accuracy, particularly in multi-label and cross-lingual emotion detection, demonstrating the effectiveness of these methods in diverse linguistic settings.
The safety defense methods of Large language models (LLMs) stays limited because the dangerous prompts are manually curated to just few known attack types, which fails to keep pace with emerging varieties. Recent studies found that attaching suffixes to harmful instructions can hack the defense of LLMs and lead to dangerous outputs. However, similar to traditional text adversarial attacks, this approach, while effective, is limited by the challenge of the discrete tokens. This gradient based discrete optimization attack requires over 100,000 LLM calls, and due to the unreadable of adversarial suffixes, it can be relatively easily penetrated by common defense methods such as perplexity filters.To cope with this challenge, in this paper, we propose an Adversarial Suffix Embedding Translation Framework (ASETF), aimed at transforming continuous adversarial suffix embeddings into coherent and understandable text. This method greatly reduces the computational overhead during the attack process and helps to automatically generate multiple adversarial samples, which can be used as data to strengthen LLM’s security defense. Experimental evaluations were conducted on Llama2, Vicuna, and other prominent LLMs, employing harmful directives sourced from the Advbench dataset.The results indicate that our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate than existing techniques, while significantly enhancing the textual fluency of the prompts. In addition, our approach can be generalized into a broader method for generating transferable adversarial suffixes that can successfully attack multiple LLMs, even black-box LLMs, such as ChatGPT and Gemini.
Speech recognition and speech synthesis models are typically trained separately, each with its own set of learning objectives, training data, and model parameters, resulting in two distinct large networks. We propose a parameter-efficient approach to learning ASR and TTS jointly via a multi-task learning objective and shared parameters. Our evaluation demonstrates thatthe performance of our multi-task model is comparable to that of individually trained models while significantly savingcomputational and memory costs (~50% reduction in the total number of parameters required for the two tasks combined). We experiment with English as a resource-rich language, and Arabic as a relatively low-resource language due to shortage of TTS data. Our models are trained with publicly available data, and both the training code and model checkpoints are openly available for further research.
A text corpus centered on events is foundational to research concerning the detection, representation, reasoning, and harnessing of online events. The majority of current event-based datasets mainly target sentence-level tasks, thus to advance event-related research spanning from sentence to document level, this paper introduces DEIE, a unified large-scale document-level event information extraction dataset with over 56,000+ events and 242,000+ arguments. Three key features stand out: large-scale manual annotation (20,000 documents), comprehensive unified annotation (encompassing event trigger/argument, summary, and relation at once), and emergency events annotation (covering 19 emergency types). Notably, our experiments reveal that current event-related models struggle with DEIE, signaling a pressing need for more advanced event-related research in the future.
Medical progress notes play a crucial role in documenting a patient’s hospital journey, including his or her condition, treatment plan, and any updates for healthcare providers. Automatic summarisation of a patient’s problems in the form of a “problem list” can aid stakeholders in understanding a patient’s condition, reducing workload and cognitive bias. BioNLP 2023 Shared Task 1A focusses on generating a list of diagnoses and problems from the provider’s progress notes during hospitalisation. In this paper, we introduce our proposed approach to this task, which integrates two complementary components. One component employs large language models (LLMs) for data augmentation; the other is an abstractive summarisation LLM with a novel pre-training objective for generating the patients’ problems summarised as a list. Our approach was ranked second among all submissions to the shared task. The performance of our model on the development and test datasets shows that our approach is more robust on unknown data, with an improvement of up to 3.1 points over the same size of the larger model.
How do different generalised quantifiers affect the behaviour of transformer-based language models (TLMs)? The recent popularity of TLMs and the central role generalised quantifiers have traditionally played in linguistics and logic bring this question into particular focus. The current research investigating this subject has not utilised a task defined purely in a logical sense, and thus, has not captured the underlying logical significance of generalised quantifiers. Consequently, they have not answered the aforementioned question faithfully or adequately. Therefore, we investigate how different generalised quantifiers affect TLMs by employing a textual entailment problem defined in a purely logical sense, namely, model-checking with natural language. Our approach permits the automatic construction of datasets with respect to which we can assess the ability of TLMs to learn the meanings of generalised quantifiers. Our investigation reveals that TLMs generally can comprehend the logical semantics of the most common generalised quantifiers, but that distinct quantifiers influence TLMs in varying ways.
Event argument extraction is critical to various natural language processing tasks for providing structured information. Existing works usually extract the event arguments one by one, and mostly neglect to build dependency information among event argument roles, especially from the perspective of event structure. Such an approach hinders the model from learning the interactions between different roles. In this paper, we raise our research question: How to adequately model dependencies between different roles for better performance? To this end, we propose an intra-event and inter-event dependency-aware graph network, which uses the event structure as the fundamental unit to construct dependencies between roles. Specifically, we first utilize the dense intra-event graph to construct role dependencies within events, and then construct dependencies between events by retrieving similar events of the current event through the retrieval module. To further optimize dependency information and event representation, we propose a dependency interaction module and two auxiliary tasks to improve the extraction ability of the model in different scenarios. Experimental results on the ACE05, RAMS, and WikiEvents datasets show the great advantages of our proposed approach.
Aspect Sentiment Triplet Extraction (ASTE) is the task of extracting the triplets of target entities, their associated sentiment, and opinion spans explaining the reason for the sentiment. Existing research efforts mostly solve this problem using pipeline approaches, which break the triplet extraction process into several stages. Our observation is that the three elements within a triplet are highly related to each other, and this motivates us to build a joint model to extract such triplets using a sequence tagging approach. However, how to effectively design a tagging approach to extract the triplets that can capture the rich interactions among the elements is a challenging research question. In this work, we propose the first end-to-end model with a novel position-aware tagging scheme that is capable of jointly extracting the triplets. Our experimental results on several existing datasets show that jointly capturing elements in the triplet using our approach leads to improved performance over the existing approaches. We also conducted extensive experiments to investigate the model effectiveness and robustness.
Targeted sentiment analysis is the task of jointly predicting target entities and their associated sentiment information. Existing research efforts mostly regard this joint task as a sequence labeling problem, building models that can capture explicit structures in the output space. However, the importance of capturing implicit global structural information that resides in the input space is largely unexplored. In this work, we argue that both types of information (implicit and explicit structural information) are crucial for building a successful targeted sentiment analysis model. Our experimental results show that properly capturing both information is able to lead to better performance than competitive existing approaches. We also conduct extensive experiments to investigate our model’s effectiveness and robustness.
This paper introduces a new task – Chinese address parsing – the task of mapping Chinese addresses into semantically meaningful chunks. While it is possible to model this problem using a conventional sequence labelling approach, our observation is that there exist complex dependencies between labels that cannot be readily captured by a simple linear-chain structure. We investigate neural structured prediction models with latent variables to capture such rich structural information within Chinese addresses. We create and publicly release a new dataset consisting of 15K Chinese addresses, and conduct extensive experiments on the dataset to investigate the model effectiveness and robustness. We release our code and data at http://statnlp.org/research/sp.
This paper investigates a new task named Conversational Question Generation (CQG) which is to generate a question based on a passage and a conversation history (i.e., previous turns of question-answer pairs). CQG is a crucial task for developing intelligent agents that can drive question-answering style conversations or test user understanding of a given passage. Towards that end, we propose a new approach named Reinforced Dynamic Reasoning network, which is based on the general encoder-decoder framework but incorporates a reasoning procedure in a dynamic manner to better understand what has been asked and what to ask next about the passage into the general encoder-decoder framework. To encourage producing meaningful questions, we leverage a popular question answering (QA) model to provide feedback and fine-tune the question generator using a reinforcement learning mechanism. Empirical results on the recently released CoQA dataset demonstrate the effectiveness of our method in comparison with various baselines and model variants. Moreover, to show the applicability of our method, we also apply it to create multi-turn question-answering conversations for passages in SQuAD.
We report an empirical study on the task of negation scope extraction given the negation cue. Our key observation is that certain useful information such as features related to negation cue, long-distance dependencies as well as some latent structural information can be exploited for such a task. We design approaches based on conditional random fields (CRF), semi-Markov CRF, as well as latent-variable CRF models to capture such information. Extensive experiments on several standard datasets demonstrate that our approaches are able to achieve better results than existing approaches reported in the literature.