Hanyang Li


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Cross-Register Projection for Headline Part of Speech Tagging
Adrian Benton | Hanyang Li | Igor Malioutov
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Part of speech (POS) tagging is a familiar NLP task. State of the art taggers routinely achieve token-level accuracies of over 97% on news body text, evidence that the problem is well understood. However, the register of English news headlines, “headlinese”, is very different from the register of long-form text, causing POS tagging models to underperform on headlines. In this work, we automatically annotate news headlines with POS tags by projecting predicted tags from corresponding sentences in news bodies. We train a multi-domain POS tagger on both long-form and headline text and show that joint training on both registers improves over training on just one or naïvely concatenating training sets. We evaluate on a newly-annotated corpus of over 5,248 English news headlines from the Google sentence compression corpus, and show that our model yields a 23% relative error reduction per token and 19% per headline. In addition, we demonstrate that better headline POS tags can improve the performance of a syntax-based open information extraction system. We make POSH, the POS-tagged Headline corpus, available to encourage research in improved NLP models for news headlines.