Hanwen Wang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
GProofT: A Multi-dimension Multi-round Fact Checking Framework Based on Claim Fact Extraction
Jiayu Liu | Junhao Tang | Hanwen Wang | Baixuan Xu | Haochen Shi | Weiqi Wang | Yangqiu Song
Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER)

In the information era, the vast proliferation of online content poses significant challenges, particularly concerning the trustworthiness of these digital statements, which can have profound societal implications. Although it is possible to manually annotate and verify the authenticity of such content, the sheer volume and rapid pace of information generation render this approach impractical, both in terms of time and cost. Therefore, it is imperative to develop automated systems capable of validating online claims, ensuring that users can use the wealth of information available on the Internet effectively and reliably. Using primarily ChatGPT and the Google search API, GProofT fact checking framework generates question-answer pairs to systematically extract and verify the facts within claims. Based on the outcomes of these QA pairs, claims are subsequently labeled as Supported, Conflicted Evidence/Cherry-Picking, or Refuted. Shown by extensive experiments, GProofT Retrieval generally performs effectively in fact-checking and makes a substantial contribution to the task. Our code is released on https://github.com/HKUST-KnowComp/GProofT.