Hannah VanderHoeven


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
TRACE: Real-Time Multimodal Common Ground Tracking in Situated Collaborative Dialogues
Hannah VanderHoeven | Brady Bhalla | Ibrahim Khebour | Austin C. Youngren | Videep Venkatesha | Mariah Bradford | Jack Fitzgerald | Carlos Mabrey | Jingxuan Tu | Yifan Zhu | Kenneth Lai | Changsoo Jung | James Pustejovsky | Nikhil Krishnaswamy
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)

We present TRACE, a novel system for live *common ground* tracking in situated collaborative tasks. With a focus on fast, real-time performance, TRACE tracks the speech, actions, gestures, and visual attention of participants, uses these multimodal inputs to determine the set of task-relevant propositions that have been raised as the dialogue progresses, and tracks the group’s epistemic position and beliefs toward them as the task unfolds. Amid increased interest in AI systems that can mediate collaborations, TRACE represents an important step forward for agents that can engage with multiparty, multimodal discourse.