Hannah Stone


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Persistent Homology of Topic Networks for the Prediction of Reader Curiosity
Manuel D. S. Hopp | Vincent Labatut | Arthur Amalvy | Richard Dufour | Hannah Stone | Hayley Jach | Kou Murayama
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Reader curiosity, the drive to seek information, is crucial for textual engagement, yet remains relatively underexplored in NLP. Building on Loewenstein’s Information Gap Theory, we introduce a framework that models reader curiosity by quantifying semantic information gaps within a text’s semantic structure. Our approach leverages BERTopic-inspired topic modeling and persistent homology to analyze the evolving topology (connected components, cycles, voids) of a dynamic semantic network derived from text segments, treating these features as proxies for information gaps. To empirically evaluate this pipeline, we collect reader curiosity ratings from participants (n = 49) as they read S. Collins’s “The Hunger Games” novel. We then use the topological features from our pipeline as independent variables to predict these ratings, and experimentally show that they significantly improve curiosity prediction compared to a baseline model (73% vs. 30% explained deviance), validating our approach. This pipeline offers a new computational method for analyzing text structure and its relation to reader engagement.