Hanjing Wang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Boost, Disentangle, and Customize: A Robust System2-to-System1 Pipeline for Code Generation
Kounianhua Du | Hanjing Wang | Jianxing Liu | Jizheng Chen | Xinyi Dai | Yasheng Wang | Ruiming Tang | Yong Yu | Jun Wang | Weinan Zhang
Findings of the Association for Computational Linguistics: ACL 2025

To address these limitations, we propose BDC, a novel framework that Boosts reasoning exploration via multi-agent collaboration, Disentangles heterogeneous data into specialized experts, and Customizes solutions through dynamic model composition. BDC integrates a Monte Carlo Tree-of-Agents algorithm, where multiple LLMs mutually verify and refine reasoning paths through reflection-guided pruning, enabling efficient exploration of high-quality solutions. To handle data diversity, we cluster problems by latent semantics, train composable LoRA experts on each cluster, and deploy an input-aware hypernetwork to dynamically merge these experts into tailored solvers. Experiments on APPS and CodeContest benchmarks demonstrate BDC’s superiority: it achieves up to 73.8% accuracy on hard problems, outperforming state-of-the-art methods like LATS and RethinkMCTS by 9–15%. This work lays the groundwork for advancing LLM capabilities in complex reasoning tasks, offering a novel System2-to-System1 solution.