This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Hanh Thi HongTran
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The widespread use of large language models (LLMs) influences different social media and educational contexts through the overwhelming generated text with a certain degree of coherence. To mitigate their potential misuse, this paper explores the feasibility of finetuning LLaMA with label supervision (named LS-LLaMA) in unidirectional and bidirectional settings, to discriminate the texts generated by machines and humans in monolingual and multilingual corpora. Our findings show that unidirectional LS-LLaMA outperformed the sequence language models as the benchmark by a large margin. Our code is publicly available at https://github.com/honghanhh/llama-as-a-judge.
This paper summarizes the participation of our team (Flawless Lawgic) in the legal named entity recognition (L-NER) task at LegalLens 2024: Detecting Legal Violations. Given possible unstructured texts (e.g., online media texts), we aim to identify legal violations by extracting legal entities such as “violation”, “violation by”, “violation on”, and “law”. This system-description paper discusses our approaches to address the task, empirically highlighting the performances of fine-tuning models from the Transformers family (e.g., RoBERTa and DeBERTa) against open-sourced LLMs (e.g., Llama, Mistral) with different tuning settings (e.g., LoRA, Supervised Fine-Tuning (SFT) and prompting strategies). Our best results, with a weighted F1 of 0.705 on the test set, show a 30 percentage points increase in F1 compared to the baseline and rank 2 on the leaderboard, leaving a marginal gap of only 0.4 percentage points lower than the top solution. Our solutions are available at github.com/honghanhh/lner.
This paper summarizes our participation in SemEval-2024 Task 8: Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection. In this task, we aim to solve two over three Subtasks: (1) Monolingual and Multilingual Binary Human-Written vs. Machine-Generated Text Classification; and (2) Multi-Way Machine-Generated Text Classification. We conducted a comprehensive comparative study across three methodological groups: Five metric-based models (Log-Likelihood, Rank, Log-Rank, Entropy, and MFDMetric), two fine-tuned sequence-labeling language models (RoBERTA and XLM-R); and a fine-tuned large-scale language model (LS-LLaMA). Our findings suggest that our LLM outperformed both traditional sequence-labeling LM benchmarks and metric-based approaches. Furthermore, our fine-tuned classifier excelled in detecting machine-generated multilingual texts and accurately classifying machine-generated texts within a specific category, (e.g., ChatGPT, bloomz, dolly). However, they do exhibit challenges in detecting them in other categories (e.g., cohere, and davinci). This is due to potential overlap in the distribution of the metric among various LLMs. Overall, we achieved a 6th rank in both Multilingual Binary Human-Written vs. Machine-Generated Text Classification and Multi-Way Machine-Generated Text Classification on the leaderboard.