Hanane Azzag


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Leveraging Text-to-Text Transformers as Classifier Chain for Few-Shot Multi-Label Classification
Quang Anh Nguyen | Nadi Tomeh | Mustapha Lebbah | Thierry Charnois | Hanane Azzag
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Multilabel text classification (MLTC) is an essential task in NLP applications. Traditional methods require extensive labeled data and are limited to fixed label sets. Extracting labels by LLMs is more effective and universal, but incurs high computational costs. In this work, we introduce a distillation-based T5 generalist model for zero-shot MLTC and few-shot fine-tuning. Our model accommodates variable label sets with general domain-agnostic pertaining, while modeling dependency between labels. Experiments show that our approach outperforms baselines of similar size on three few-shot tasks.