Han-Gyu Kim


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
DialogCC: An Automated Pipeline for Creating High-Quality Multi-Modal Dialogue Dataset
Young-Jun Lee | Byungsoo Ko | Han-Gyu Kim | Jonghwan Hyeon | Ho-Jin Choi
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

As sharing images in an instant message is a crucial factor, there has been active research on learning an image-text multi-modal dialogue models.However, training a well-generalized multi-modal dialogue model remains challenging due to the low quality and limited diversity of images per dialogue in existing multi-modal dialogue datasets.In this paper, we propose an automated pipeline to construct a multi-modal dialogue dataset, ensuring both dialogue quality and image diversity without requiring minimum human effort. In our pipeline, to guarantee the coherence between images and dialogue, we prompt GPT-4 to infer potential image-sharing moments - specifically, the utterance, speaker, rationale, and image description. Furthermore, we leverage CLIP similarity to maintain consistency between aligned multiple images to the utterance.Through this pipeline, we introduce DialogCC, a high-quality and diverse multi-modal dialogue dataset that surpasses existing datasets in terms of quality and diversity in human evaluation.Our comprehensive experiments highlight that when multi-modal dialogue models are trained using our dataset, their generalization performance on unseen dialogue datasets is significantly enhanced. We make our source code and dataset publicly available (https://dialogcc.github.io/).