This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
HajimeSenuma
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper revisits a classical, yet fundamental, discussion of theoretical computational linguistics: the computational complexity of natural languages. Past studies have revealed that syntax, as observed in Swiss-German, is not weakly context-free. Concerning morphology, Culy (1985) employed a construction in Bambara to show that morphology is not weakly context-free; however, Manaster-Ramer (1988) pointed out that the Bambara case can be problematic because the wordhood of the construction is reliant on special tonal behaviors, and it is ambiguous whether the behaviors belong to the morphological domain. This raises doubts about whether the case can be considered a genuine morphological phenomenon. In this paper, we argue that Classical Ainu, a language we examine, also defies weak context-freeness at the morphological level. The construction we introduce is unambiguously morphological because this language’s valency-sensitive structure and valency-changing operations, such as noun incorporation, preclude its grammatical interpretation as syntactic.
The recent proliferation of smart devices necessitates methods to learn small-sized models. This paper demonstrates that if there are m features in total but only n = o(√m) features are required to distinguish examples, with 𝛺(log m) training examples and reasonable settings, it is possible to obtain a good model in a succinct representation using n log2m⁄n + o(m) bits, by using a pipeline of existing compression methods: L1-regularized logistic regression, feature hashing, Elias–Fano indices, and randomized quantization. An experiment shows that a noun phrase chunking task for which an existing library requires 27 megabytes can be compressed to less than 13 kilobytes without notable loss of accuracy.