This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
HadiAskari
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Large Language Models (LLMs) have achieved state-of-the-art performance at zero-shot generation of abstractive summaries for given articles. However, little is known about the robustness of such a process of zero-shot summarization.To bridge this gap, we propose *relevance paraphrasing*, a simple strategy that can be used to measure the robustness of LLMs as summarizers. The relevance paraphrasing approach identifies the most *relevant* sentences that contribute to generating an ideal summary, and then *paraphrases* these inputs to obtain a minimally perturbed dataset. Then, by evaluating model performance for summarization on both the original and perturbed datasets, we can assess the LLM’s one aspect of robustness. We conduct extensive experiments with relevance paraphrasing on 4 diverse datasets, as well as 4 LLMs of different sizes (GPT-3.5-Turbo, Llama-2-13B, Mistral-7B-v1, and Dolly-v2-7B). Our results indicate that LLMs are not consistent summarizers for the minimally perturbed articles, necessitating further improvements.
Existing studies in backdoor defense have predominantly focused on the training phase, overlooking the critical aspect of testing time defense. This gap becomes pronounced in the context of Large Language Models (LLMs) deployed as Web Services, which typically offer only black-box access, rendering training-time defenses impractical. To bridge this gap, this study critically examines the use of demonstrations as a defense mechanism against backdoor attacks in black-box LLMs. With an identified task, we retrieve task-relevant demonstrations from a clean data pool and integrate them with user queries during testing. Importantly, this approach does not necessitate modifications or tuning of the model, nor does it require insight into the model’s internal architecture. The alignment properties inherent in in-context learning play a pivotal role in mitigating the impact of backdoor triggers, effectively recalibrating the behavior of compromised models. Our experimental analysis demonstrates that this method robustly defends against both instance-level and instruction-level backdoor attacks, outperforming existing defense baselines across most evaluation scenarios.
We characterize and study zero-shot abstractive summarization in Large Language Models (LLMs) by measuring position bias, which we propose as a general formulation of the more restrictive lead bias phenomenon studied previously in the literature. Position bias captures the tendency of a model unfairly prioritizing information from certain parts of the input text over others, leading to undesirable behavior. Through numerous experiments on four diverse real-world datasets, we study position bias in multiple LLM models such as GPT 3.5-Turbo, Llama-2, and Dolly-v2, as well as state-of-the-art pretrained encoder-decoder abstractive summarization models such as Pegasus and BART. Our findings lead to novel insights and discussion on performance and position bias of models for zero-shot summarization tasks.