Guokuan Li


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
RATE-Nav: Region-Aware Termination Enhancement for Zero-shot Object Navigation with Vision-Language Models
Junjie Li | Nan Zhang | Xiaoyang Qu | Kai Lu | Guokuan Li | Jiguang Wan | Jianzong Wang
Findings of the Association for Computational Linguistics: ACL 2025

Object Navigation (ObjectNav) is a fundamental task in embodied artificial intelligence. Although significant progress has been made in semantic map construction and target direction prediction in current research, redundant exploration and exploration failures remain inevitable. A critical but underexplored direction is the timely termination of exploration to overcome these challenges. We observe a diminishing marginal effect between exploration steps and exploration rates and analyze the cost-benefit relationship of exploration. Inspired by this, we propose RATE-Nav, a Region-Aware Termination-Enhanced method. It includes a geometric predictive region segmentation algorithm and region-Based exploration estimation algorithm for exploration rate calculation. By leveraging the visual question answering capabilities of visual language models (VLMs) and exploration rates enables efficient termination.RATE-Nav achieves a success rate of 67.8% and an SPL of 31.3% on the HM3D dataset. And on the more challenging MP3D dataset, RATE-Nav shows approximately 10% improvement over previous zero-shot methods.