Guohong Li


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Towards Optimal Evaluation Efficiency for Large Language Models
Guohong Li | Deyi Xiong
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Comprehensive evaluation of large language models (LLMs) typically requires large-scale benchmarks, which is costly in terms of both data annotation and computational resource needed for evaluation. To mitigate these challenges, we propose an efficient evaluation framework that selects a question subset based on pre-tested results, thereby reducing the costs. We formulate the subset selection problem as an optimization task, solved using optimal random sampling and simulated annealing algorithms. We compare our approach with prior clustering-based methods and assess their reliability in terms of score accuracy. Additionally, we perform semantic analysis and evaluate whether the selected subsets preserve the semantic information of the original benchmark using Wasserstein distance. Experimental results show that our method outperforms previous approaches in terms of reliability, as measured by L2 norm. Our study provides an optimized perspective for balancing evaluation efficiency and reliability in LLM assessments, while revealing the relationship between optimization methods and semantic retention.