Guiling Cao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Better Red Teaming via Searching with Large Language Model
Yongkang Chen | Chongyang Zhao | Jianwen Tian | Guiling Cao | Hu Li | Xiaohui Kuang
Findings of the Association for Computational Linguistics: ACL 2025

The safe deployment of large language models (LLMs) necessitates comprehensive safety evaluations through red teaming. However, existing methods face challenges in managing semantic intricacies and optimizing the efficiency of the search process. To overcome these limitations, we propose Better Red Teaming (BRT)—an innovative framework that reconceptualizes test case generation as a strategic planning problem, leveraging Monte Carlo Tree Search (MCTS). A notable advancement of our approach is the incorporation of LLMs as world models, enabling the prediction of state transitions and simulation of long-term outcomes throughout the search process. By jointly optimizing objectives related to conditional mutual information and diversity, we improve the world model’s capacity to follow actions while maintaining output diversity. Extensive experiments conducted across a range of LLM architectures demonstrate that BRT achieves state-of-the-art attack success rates without sacrificing computational efficiency.