Guanzhong Chen


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
CENTAUR: Bridging the Impossible Trinity of Privacy, Efficiency, and Performance in Privacy-Preserving Transformer Inference
Jinglong Luo | Guanzhong Chen | Yehong Zhang | Shiyu Liu | Hui Wang | Yue Yu | Xun Zhou | Yuan Qi | Zenglin Xu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With the growing deployment of pre-trained models like Transformers on cloud platforms, privacy concerns about model parameters and inference data are intensifying. Existing Privacy-Preserving Transformer Inference (PPTI) frameworks face the “impossible trinity” of balancing privacy, efficiency, and performance: Secure Multi-Party Computation (SMPC)-based approaches ensure strong privacy but suffer from high computational overhead and performance losses; Conversely, permutation-based methods achieve near-plaintext efficiency and accuracy but compromise privacy by exposing sensitive model parameters and intermediate results. Bridging this gap with a single approach presents substantial challenges, motivating the introduction of CENTAUR, a groundbreaking PPTI framework that seamlessly integrates random permutations and SMPC to address the “impossible trinity”. By designing efficient PPTI algorithms tailored to the structural properties of Transformer models, CENTAUR achieves an unprecedented balance among privacy, efficiency, and performance. Our experiments demonstrate CENTAUR’s ability to resist diverse data reconstruction attacks, achieve plaintext-level inference accuracy, and boost inference speed by 5.0~30.4 times, unlocking new possibilities for secure and efficient AI deployment.