Guanghui Han


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
QFNU_CS at SemEval-2024 Task 3: A Hybrid Pre-trained Model based Approach for Multimodal Emotion-Cause Pair Extraction Task
Zining Wang | Yanchao Zhao | Guanghui Han | Yang Song
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This article presents the solution of Qufu Normal University for the Multimodal Sentiment Cause Analysis competition in SemEval2024 Task 3.The competition aims to extract emotion-cause pairs from dialogues containing text, audio, and video modalities. To cope with this task, we employ a hybrid pre-train model based approach. Specifically, we first extract and fusion features from dialogues based on BERT, BiLSTM, openSMILE and C3D. Then, we adopt BiLSTM and Transformer to extract the candidate emotion-cause pairs. Finally, we design a filter to identify the correct emotion-cause pairs. The evaluation results show that, we achieve a weighted average F1 score of 0.1786 and an F1 score of 0.1882 on CodaLab.