Greg Burnham


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
To Test Machine Comprehension, Start by Defining Comprehension
Jesse Dunietz | Greg Burnham | Akash Bharadwaj | Owen Rambow | Jennifer Chu-Carroll | Dave Ferrucci
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Many tasks aim to measure machine reading comprehension (MRC), often focusing on question types presumed to be difficult. Rarely, however, do task designers start by considering what systems should in fact comprehend. In this paper we make two key contributions. First, we argue that existing approaches do not adequately define comprehension; they are too unsystematic about what content is tested. Second, we present a detailed definition of comprehension—a “Template of Understanding”—for a widely useful class of texts, namely short narratives. We then conduct an experiment that strongly suggests existing systems are not up to the task of narrative understanding as we define it.