Grant M. Berry


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Interactive Post-Editing for Verbosity Controlled Translation
Prabhakar Gupta | Anil Nelakanti | Grant M. Berry | Abhishek Sharma
Proceedings of the 29th International Conference on Computational Linguistics

We explore Interactive Post-Editing (IPE) models for human-in-loop translation to help correct translation errors and rephrase it with a desired style variation. We specifically study verbosity for style variations and build on top of multi-source transformers that can read source and hypothesis to improve the latter with user inputs. Token-level interaction inputs for error corrections and length interaction inputs for verbosity control are used by the model to generate a suitable translation. We report BERTScore to evaluate semantic quality with other relevant metrics for translations from English to German, French and Spanish languages. Our model achieves superior BERTScore over state-of-the-art machine translation models while maintaining the desired token-level and verbosity preference.