Grace Cuenca


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
MCoNaLa: A Benchmark for Code Generation from Multiple Natural Languages
Zhiruo Wang | Grace Cuenca | Shuyan Zhou | Frank F. Xu | Graham Neubig
Findings of the Association for Computational Linguistics: EACL 2023

While there has been a recent burgeoning of applications at the intersection of natural and programming languages, such as code generation and code summarization, these applications are usually English-centric. This creates a barrier for program developers who are not proficient in English. To mitigate this gap in technology development across languages, we propose a multilingual dataset, MCoNaLa, to benchmark code generation from natural language commands extending beyond English. Modeled off of the methodology from the English Code/Natural Language Challenge (CoNaLa) dataset, we annotated a total of 896 NL-Code pairs in three languages: Spanish, Japanese, and Russian. We present a systematic evaluation on MCoNaLa by testing state-of-the-art code generation systems. Although the difficulties vary across three languages, all systems lag significantly behind their English counterparts, revealing the challenges in adapting code generation to new languages.