Gourav Sarkar


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Mahānāma: A Unique Testbed for Literary Entity Discovery and Linking
Sujoy Sarkar | Gourav Sarkar | Manoj Balaji Jagadeeshan | Jivnesh Sandhan | Amrith Krishna | Pawan Goyal
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

High lexical variation, ambiguous references, and long-range dependencies make entity resolution in literary texts particularly challenging. We present Mahānāma, the first large-scale dataset for end-to-end Entity Discovery and Linking (EDL) in Sanskrit, a morphologically rich and under-resourced language. Derived from the Mahābhārata , the world’s longest epic, the dataset comprises over 109K named entity mentions mapped to 5.5K unique entities, and is aligned with an English knowledge base to support cross-lingual linking. The complex narrative structure of Mahānāma, coupled with extensive name variation and ambiguity, poses significant challenges to resolution systems. Our evaluation reveals that current coreference and entity linking models struggle when evaluated on the global context of the test set. These results highlight the limitations of current approaches in resolving entities within such complex discourse. Mahānāma thus provides a unique benchmark for advancing entity resolution, especially in literary domains.