This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Gopendra VikramSingh
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Self-harm detection on social media is critical for early intervention and mental health support, yet remains challenging due to the subtle, context-dependent nature of such expressions. Identifying self-harm intent aids suicide prevention by enabling timely responses, but current large language models (LLMs) struggle to interpret implicit cues in casual language and emojis. This work enhances LLMs’ comprehension of self-harm by distinguishing intent through nuanced language–emoji interplay. We present the Centennial Emoji Sensitivity Matrix (CESM-100)—a curated set of 100 emojis with contextual self-harm interpretations—and the Self-Harm Identification aNd intent Extraction with Supportive emoji sensitivity (SHINES) dataset, offering detailed annotations for self-harm labels, casual mentions (CMs), and serious intents (SIs). Our unified framework:a) enriches inputs using CESM-100;b) fine-tunes LLMs for multi-task learning—self-harm detection (primary) and CM/SI span detection (auxiliary);c) generate explainable rationales for self-harm predictions. We evaluate the framework on three state-of-the-art LLMs—Llama 3, Mental-Alpaca, and MentalLlama—across zero-shot, few-shot, and fine-tuned scenarios. By coupling intent differentiation with contextual cues, our approach commendably enhances LLM performance in both detection and explanation tasks, effectively addressing the inherent ambiguity in self-harm signals. The SHINES dataset, CESM-100 and codebase are publicly available at: https://www.iitp.ac.in/%7eai-nlp-ml/resources.html#SHINES
Cognitive distortion research holds increasing significance as it sheds light on pervasive errors in thinking patterns, providing crucial insights into mental health challenges and fostering the development of targeted interventions and therapies. This paper delves into the complex domain of cognitive distortions which are prevalent distortions in cognitive processes often associated with mental health issues. Focusing on patient-doctor dialogues, we introduce a pioneering method for detecting and reasoning about cognitive distortions utilizing Large Language Models (LLMs). Operating within a multimodal context encompassing audio, video, and textual data, our approach underscores the critical importance of integrating diverse modalities for a comprehensive understanding of cognitive distortions. By leveraging multimodal information, including audio, video, and textual data, our method offers a nuanced perspective that enhances the accuracy and depth of cognitive distortion detection and reasoning in a zero-shot manner. Our proposed hierarchical framework adeptly tackles both detection and reasoning tasks, showcasing significant performance enhancements compared to current methodologies. Through comprehensive analysis, we elucidate the efficacy of our approach, offering promising insights into the diagnosis and understanding of cognitive distortions in multimodal settings.The code and dataset can be found here: https://github.com/clang1234/ZS-CoDR.git
Automated personality subtyping is a crucial area of research with diverse applications in psychology, healthcare, and marketing. However, current studies face challenges such as insufficient data, noisy text data, and difficulty in capturing complex personality traits. To address these issues, including empathy, distress, and emotion as auxiliary tasks in automated personality subtyping may enhance accuracy and robustness. This study introduces a Multi-input Multi-task Framework for Personality, Empathy, Distress, and Emotion Detection (MultiPEDE). This framework harnesses the complementary information from empathy, distress, and emotion tasks (auxiliary tasks) to enhance the accuracy and generalizability of automated personality subtyping (the primary task). The model uses a novel deep-learning architecture that captures the interdependencies between these constructs, is end-to-end trainable, and does not rely on ensemble strategies, making it practical for real-world applications. Performance evaluation involves labeled examples of five personality traits, two classes each for personality, empathy, and distress detection, and seven classes for emotion detection. This approach has diverse applications, including mental health diagnosis, improving online services, and aiding job candidate selection.
In this paper, we hypothesize that humor is closely related to sentiment and emotions. Also, due to the tremendous growth in multilingual content, there is a great demand for building models and systems that support multilingual information access. To end this, we first extend the recently released Multimodal Multiparty Hindi Humor (M2H2) dataset by adding parallel English utterances corresponding to Hindi utterances and then annotating each utterance with sentiment and emotion classes. We name it Sentiment, Humor, and Emotion aware Multilingual Multimodal Multiparty Dataset (SHEMuD). Therefore, we propose a multitask framework wherein the primary task is humor detection, and the auxiliary tasks are sentiment and emotion identification. We design a multitasking framework wherein we first propose a Context Transformer to capture the deep contextual relationships with the input utterances. We then propose a Sentiment and Emotion aware Embedding (SE-Embedding) to get the overall representation of a particular emotion and sentiment w.r.t. the specific humor situation. Experimental results on the SHEMuD show the efficacy of our approach and shows that multitask learning offers an improvement over the single-task framework for both monolingual (4.86 points in Hindi and 5.9 points in English in F1-score) and multilingual (5.17 points in F1-score) setting.
Mental health is a critical component of the United Nations’ Sustainable Development Goals (SDGs), particularly Goal 3, which aims to provide “good health and well-being”. The present mental health treatment gap is exacerbated by stigma, lack of human resources, and lack of research capability for implementation and policy reform. We present and discuss a novel task of detecting emotional reasoning (ER) and accompanying emotions in conversations. In particular, we create a first-of-its-kind multimodal mental health conversational corpus that is manually annotated at the utterance level with emotional reasoning and related emotion. We develop a multimodal multitask framework with a novel multimodal feature fusion technique and a contextuality learning module to handle the two tasks. Leveraging multimodal sources of information, commonsense reasoning, and through a multitask framework, our proposed model produces strong results. We achieve performance gains of 6% accuracy and 4.62% F1 on the emotion detection task and 3.56% accuracy and 3.31% F1 on the ER detection task, when compared to the existing state-of-the-art model.
The long-standing goal of Artificial Intelligence (AI) has been to create human-like conversational systems. Such systems should have the ability to develop an emotional connection with the users, consequently, emotion recognition in dialogues has gained popularity. Emotion detection in dialogues is a challenging task because humans usually convey multiple emotions with varying degrees of intensities in a single utterance. Moreover, emotion in an utterance of a dialogue may be dependent on previous utterances making the task more complex. Recently, emotion recognition in low-resource languages like Hindi has been in great demand. However, most of the existing datasets for multi-label emotion and intensity detection in conversations are in English. To this end, we propose a large conversational dataset in Hindi named EmoInHindi for multi-label emotion and intensity recognition in conversations containing 1,814 dialogues with a total of 44,247 utterances. We prepare our dataset in a Wizard-of-Oz manner for mental health and legal counselling of crime victims. Each utterance of dialogue is annotated with one or more emotion categories from 16 emotion labels including neutral and their corresponding intensity. We further propose strong contextual baselines that can detect the emotion(s) and corresponding emotional intensity of an utterance given the conversational context.