Gong Zhang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
HATA: Trainable and Hardware-Efficient Hash-Aware Top-k Attention for Scalable Large Model Inference
Ping Gong | Jiawei Yi | Shengnan Wang | Juncheng Zhang | Zewen Jin | Ouxiang Zhou | Ruibo Liu | Guanbin Xu | Youhui Bai | Bowen Ye | Kun Yuan | Tong Yang | Gong Zhang | Renhai Chen | Feng Wu | Cheng Li
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs) have emerged as a pivotal research area, yet the attention module remains a critical bottleneck in LLM inference, even with techniques like KVCache to mitigate redundant computations. While various top-k attention mechanisms have been proposed to accelerate LLM inference by exploiting the inherent sparsity of attention, they often struggled to strike a balance between efficiency and accuracy. In this paper, we introduce HATA (Hash-Aware Top-k Attention), a novel approach that systematically integrates low-overhead learning-to-hash techniques into the Top-k attention process. Different from the existing top-k attention methods which are devoted to seeking an absolute estimation of qk score, typically with a great cost, HATA maps queries and keys into binary hash codes, and acquires the relative qk score order with a quite low cost, which is sufficient for realizing top-k attention. Extensive experiments demonstrate that HATA achieves up to 7.2× speedup compared to vanilla full attention while maintaining model accuracy. In addition, HATA outperforms the state-of-the-art top-k attention methods in both accuracy and efficiency across multiple mainstream LLM models and diverse tasks. HATA is open source at https://github.com/gpzlx1/HATA.