Gong Shuai


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
A Multi-Gate Encoder for Joint Entity and Relation Extraction
Xiong Xiong | Liu Yunfei | Liu Anqi | Gong Shuai | Li Shengyang
Proceedings of the 21st Chinese National Conference on Computational Linguistics

“Named entity recognition and relation extraction are core sub-tasks of relational triple extraction. Recent studies have used parameter sharing or joint decoding to create interaction between these two tasks. However, ensuring the specificity of task-specific traits while the two tasks interact properly is a huge difficulty. We propose a multi-gate encoder that models bidirectional task interaction while keeping sufficient feature specificity based on gating mechanism in this paper. Precisely, we design two types of independent gates: task gates to generate task-specific features and interaction gates to generate instructive features to guide the opposite task. Our experiments show that our method increases the state-of-the-art (SOTA) relation F1 scores on ACE04, ACE05 and SciERC datasets to 63.8% (+1.3%), 68.2% (+1.4%), 39.4% (+1.0%), respectively, with higher inference speed over previous SOTA model.”