Giscard Biamby


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
G3: Geolocation via Guidebook Grounding
Grace Luo | Giscard Biamby | Trevor Darrell | Daniel Fried | Anna Rohrbach
Findings of the Association for Computational Linguistics: EMNLP 2022

We demonstrate how language can improve geolocation: the task of predicting the location where an image was taken. Here we study explicit knowledge from human-written guidebooks that describe the salient and class-discriminative visual features humans use for geolocation. We propose the task of Geolocation via Guidebook Grounding that uses a dataset of StreetView images from a diverse set of locations and an associated textual guidebook for GeoGuessr, a popular interactive geolocation game. Our approach predicts a country for each image by attending over the clues automatically extracted from the guidebook. Supervising attention with country-level pseudo labels achieves the best performance. Our approach substantially outperforms a state-of-the-art image-only geolocation method, with an improvement of over 5% in Top-1 accuracy. Our dataset and code can be found at https://github.com/g-luo/geolocation_via_guidebook_grounding.

pdf bib
Twitter-COMMs: Detecting Climate, COVID, and Military Multimodal Misinformation
Giscard Biamby | Grace Luo | Trevor Darrell | Anna Rohrbach
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Detecting out-of-context media, such as “miscaptioned” images on Twitter, is a relevant problem, especially in domains of high public significance. In this work we aim to develop defenses against such misinformation for the topics of Climate Change, COVID-19, and Military Vehicles. We first present a large-scale multimodal dataset with over 884k tweets relevant to these topics. Next, we propose a detection method, based on the state-of-the-art CLIP model, that leverages automatically generated hard image-text mismatches. While this approach works well on our automatically constructed out-of-context tweets, we aim to validate its usefulness on data representative of the real world. Thus, we test it on a set of human-generated fakes, created by mimicking in-the-wild misinformation. We achieve an 11% detection improvement in a high precision regime over a strong baseline. Finally, we share insights about our best model design and analyze the challenges of this emerging threat.