Giri Anantharaman


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Larger-Scale Transformers for Multilingual Masked Language Modeling
Naman Goyal | Jingfei Du | Myle Ott | Giri Anantharaman | Alexis Conneau
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

Recent work has demonstrated the effectiveness of cross-lingual language model pretraining for cross-lingual understanding. In this study, we present the results of two larger multilingual masked language models, with 3.5B and 10.7B parameters. Our two new models dubbed and outperform XLM-R by 1.8% and 2.4% average accuracy on XNLI. Our model also outperforms the RoBERTa-Large model on several English tasks of the GLUE benchmark by 0.3% on average while handling 99 more languages. This suggests larger capacity models for language understanding may obtain strong performance on high-resource languages while greatly improving low-resource languages. We make our code and models publicly available.