Giorgos Kordopatis-Zilos


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Brenda Starr at SemEval-2019 Task 4: Hyperpartisan News Detection
Olga Papadopoulou | Giorgos Kordopatis-Zilos | Markos Zampoglou | Symeon Papadopoulos | Yiannis Kompatsiaris
Proceedings of the 13th International Workshop on Semantic Evaluation

In the effort to tackle the challenge of Hyperpartisan News Detection, i.e., the task of deciding whether a news article is biased towards one party, faction, cause, or person, we experimented with two systems: i) a standard supervised learning approach using superficial text and bag-of-words features from the article title and body, and ii) a deep learning system comprising a four-layer convolutional neural network and max-pooling layers after the embedding layer, feeding the consolidated features to a bi-directional recurrent neural network. We achieved an F-score of 0.712 with our best approach, which corresponds to the mid-range of performance levels in the leaderboard.