This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
GiorgiaAlbertin
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The study of language disruption in dementia aimed at individuating which features correlate with the progression of cognitive impairment is a growing area in computational linguistic research. Still, it needs a further development in analyzing some discourse phenomena that also undergo deterioration, and can help expand our understanding of dementia-related speech and refine automatic tools. This paper explores the discourse property of cohesion by investigating three types of cohesive devices: reference, lexical iteration, and connectives. Ten features related to these categories have been defined and automatically extracted from an Italian corpus of semi-spontaneous speech collected from dementia patients and healthy controls. Some of the designed features have proven significant for the binary classification of the two groups and further quantitative analysis highlight interesting differences in the use of cohesive devices, that seem to be associated with cognitive decline.
Speech analysis is gaining significance for monitoring neurodegenerative disorders, but with a view of application in clinical practice, solid evidence of the association of language features with cognitive scores is still needed. A cross-linguistic investigation has been pursued to examine whether language features show significance correlation with two cognitive scores, i.e. Mini-Mental State Examination and ki:e SB-C scores, on Alzheimer’s Disease patients. We explore 23 language features, representative of syntactic complexity and semantic richness, extracted on a dataset of free speech recordings of 138 participants distributed in four languages (Spanish, Catalan, German, Dutch). Data was analyzed using the speech library SIGMA; Pearson’s correlation was computed with Bonferroni correction, and a mixed effects linear regression analysis is done on the significant correlated results. MMSE and the SB-C are found to be correlated with no significant differences across languages. Three features were found to be significantly correlated with the SB-C scores. Among these, two features of lexical richness show consistent patterns across languages, while determiner rate showed language-specific patterns.