Gil Levi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
Connecting Supervised and Unsupervised Sentence Embeddings
Gil Levi
Proceedings of the Third Workshop on Representation Learning for NLP

Representing sentences as numerical vectors while capturing their semantic context is an important and useful intermediate step in natural language processing. Representations that are both general and discriminative can serve as a tool for tackling various NLP tasks. While common sentence representation methods are unsupervised in nature, recently, an approach for learning universal sentence representation in a supervised setting was presented in (Conneau et al.,2017). We argue that although promising results were obtained, an improvement can be reached by adding various unsupervised constraints that are motivated by auto-encoders and by language models. We show that by adding such constraints, superior sentence embeddings can be achieved. We compare our method with the original implementation and show improvements in several tasks.
Search
Co-authors
    Venues
    Fix data