This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
GibaegKim
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Recent advances in Large Language Models (LLMs) have brought significant improvements to various service domains, including chatbots and medical pre-consultation applications. In the healthcare domain, the most common approach for adapting LLMs to multi-turn dialogue generation is Supervised Fine-Tuning (SFT). However, datasets for SFT in tasks like medical pre-consultation typically exhibit a skewed turn-count distribution. Training on such data induces a novel failure mechanism we term **Format Inertia**, where models tend to generate repetitive, format-correct, but diagnostically uninformative questions in long medical dialogues. To mitigate this observed failure mechanism, we adopt a simple, data-centric method that rebalances the turn-count distribution of the training dataset. Experimental results show that our approach substantially alleviates Format Inertia in medical pre-consultation.
Safety is a paramount concern in clinical chatbot applications, where inaccurate or harmful responses can lead to serious consequences. Existing methods—such as guardrails and tool-calling—often fall short in addressing the nuanced demands of the clinical domain. In this paper, we introduce TACOS(Taxonomy of Comprehensive Safety for Clinical Agents), a fine-grained, 21-class taxonomy that integrates safety filtering and tool selection into a single user intent classification step. TACOS covers a wide spectrum of clinical and non-clinical queries, explicitly modeling varying safety thresholds and external tool dependencies. To validate our taxonomy, we curate a TACOS-annotated dataset and perform extensive experiments. Our results demonstrate the value of a new taxonomy specialized for clinical agent settings, and reveal valuable insights about train data distribution and pretrained knowledge of base models.
Hierarchical text classification (HTC) is a challenging problem with two key issues: utilizing structural information and mitigating label imbalance. Recently, the unit-based approach generating unit-based feature representations has outperformed the global approach focusing on a global feature representation. Nevertheless, unit-based models using BCE and ZLPR losses still face static thresholding and label imbalance challenges. Those challenges become more critical in large-scale hierarchies. This paper introduces a novel hierarchy-aware loss function for unit-based HTC models: Hierarchy-aware Biased Bound Margin (HBM) loss. HBM integrates learnable bounds, biases, and a margin to address static thresholding and mitigate label imbalance adaptively. Experimental results on benchmark datasets demonstrate the superior performance of HBM compared to competitive HTC models.