Gibaeg Kim


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Format Inertia: A Failure Mechanism of LLMs in Medical Pre-Consultation
Seungseop Lim | Gibaeg Kim | Wooseok Han | Jean Seo | Hyunkyung Lee | Jaehyo Yoo | Eunho Yang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Recent advances in Large Language Models (LLMs) have brought significant improvements to various service domains, including chatbots and medical pre-consultation applications. In the healthcare domain, the most common approach for adapting LLMs to multi-turn dialogue generation is Supervised Fine-Tuning (SFT). However, datasets for SFT in tasks like medical pre-consultation typically exhibit a skewed turn-count distribution. Training on such data induces a novel failure mechanism we term **Format Inertia**, where models tend to generate repetitive, format-correct, but diagnostically uninformative questions in long medical dialogues. To mitigate this observed failure mechanism, we adopt a simple, data-centric method that rebalances the turn-count distribution of the training dataset. Experimental results show that our approach substantially alleviates Format Inertia in medical pre-consultation.

pdf bib
Taxonomy of Comprehensive Safety for Clinical Agents
Jean Seo | Hyunkyung Lee | Gibaeg Kim | Wooseok Han | Jaehyo Yoo | Seungseop Lim | Kihun Shin | Eunho Yang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Safety is a paramount concern in clinical chatbot applications, where inaccurate or harmful responses can lead to serious consequences. Existing methods—such as guardrails and tool-calling—often fall short in addressing the nuanced demands of the clinical domain. In this paper, we introduce TACOS(Taxonomy of Comprehensive Safety for Clinical Agents), a fine-grained, 21-class taxonomy that integrates safety filtering and tool selection into a single user intent classification step. TACOS covers a wide spectrum of clinical and non-clinical queries, explicitly modeling varying safety thresholds and external tool dependencies. To validate our taxonomy, we curate a TACOS-annotated dataset and perform extensive experiments. Our results demonstrate the value of a new taxonomy specialized for clinical agent settings, and reveal valuable insights about train data distribution and pretrained knowledge of base models.

2024

pdf bib
Hierarchy-aware Biased Bound Margin Loss Function for Hierarchical Text Classification
Gibaeg Kim | SangHun Im | Heung-Seon Oh
Findings of the Association for Computational Linguistics: ACL 2024

Hierarchical text classification (HTC) is a challenging problem with two key issues: utilizing structural information and mitigating label imbalance. Recently, the unit-based approach generating unit-based feature representations has outperformed the global approach focusing on a global feature representation. Nevertheless, unit-based models using BCE and ZLPR losses still face static thresholding and label imbalance challenges. Those challenges become more critical in large-scale hierarchies. This paper introduces a novel hierarchy-aware loss function for unit-based HTC models: Hierarchy-aware Biased Bound Margin (HBM) loss. HBM integrates learnable bounds, biases, and a margin to address static thresholding and mitigate label imbalance adaptively. Experimental results on benchmark datasets demonstrate the superior performance of HBM compared to competitive HTC models.