Giacomo Rosso


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
MALTO at SemEval-2024 Task 6: Leveraging Synthetic Data for LLM Hallucination Detection
Federico Borra | Claudio Savelli | Giacomo Rosso | Alkis Koudounas | Flavio Giobergia
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

In Natural Language Generation (NLG), contemporary Large Language Models (LLMs) face several challenges, such as generating fluent yet inaccurate outputs and reliance on fluency-centric metrics. This often leads to neural networks exhibiting “hallucinations.” The SHROOM challenge focuses on automatically identifying these hallucinations in the generated text. To tackle these issues, we introduce two key components, a data augmentation pipeline incorporating LLM-assisted pseudo-labelling and sentence rephrasing, and a voting ensemble from three models pre-trained on Natural Language Inference (NLI) tasks and fine-tuned on diverse datasets.