Gi-Youn Kim


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
How to use Language Models for Synthetic Text Generation in Cerebrovascular Disease-specific Medical Reports
Byoung-Doo Oh | Gi-Youn Kim | Chulho Kim | Yu-Seop Kim
Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024)

The quantity and quality of data have a significant impact on the performance of artificial intelligence (AI). However, in the biomedical domain, data often contains sensitive information such as personal details, making it challenging to secure enough data for medical AI. Consequently, there is a growing interest in synthetic data generation for medical AI. However, research has primarily focused on medical images, with little given to text-based data such as medical records. Therefore, this study explores the application of language models (LMs) for synthetic text generation in low-resource domains like medical records. It compares the results of synthetic text generation based on different LMs. To achieve this, we focused on two criteria for LM-based synthetic text generation of medical records using two keywords entered by the user: 1) the impact of the LM’s knowledge, 2) the impact of the LM’s size. Additionally, we objectively evaluated the generated synthetic text, including representative metrics such as BLUE and ROUGE, along with clinician’s evaluations.