Georgy Andryushchenko


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Evaluating Tokenizer Adaptation Methods for Large Language Models on Low-Resource Programming Languages
Georgy Andryushchenko | Vladimir V. Ivanov
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

Large language models (LLMs), which are primarily trained on high-resource programming languages (HRPLs), tend to perform sub-optimally for low-resource programming languages (LRPLs). This study investigates the impact of tokenizer adaptation methods on improving code generation for LRPLs. StarCoder 2 and DeepSeek-Coder models adapted to Elixir and Racket using methods such as Fast Vocabulary Transfer (FVT), FOCUS, and Zero-shot Tokenizer Transfer (ZeTT) are evaluated and compared with the original and fine-tuned models. Our experiments reveal that ZeTT outperforms other methods, achieving significant improvements in handling syntax, program logic, and data types for LRPLs. However, we also highlight performance declines in non-target languages like Python after tokenizer adaptation. The study approves the positive impact of tokenizer adaptation in enhancing LRPL code generation and suggests directions for future research, including token embeddings improvement.