Georgios Sidiropoulos


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Combining Lexical and Dense Retrieval for Computationally Efficient Multi-hop Question Answering
Georgios Sidiropoulos | Nikos Voskarides | Svitlana Vakulenko | Evangelos Kanoulas
Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing

In simple open-domain question answering (QA), dense retrieval has become one of the standard approaches for retrieving the relevant passages to infer an answer. Recently, dense retrieval also achieved state-of-the-art results in multi-hop QA, where aggregating information from multiple pieces of information and reasoning over them is required. Despite their success, dense retrieval methods are computationally intensive, requiring multiple GPUs to train. In this work, we introduce a hybrid (lexical and dense) retrieval approach that is highly competitive with the state-of-the-art dense retrieval models, while requiring substantially less computational resources. Additionally, we provide an in-depth evaluation of dense retrieval methods on limited computational resource settings, something that is missing from the current literature.