This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
GeorgeKour
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
As Large Language Models (LLMs) become deeply integrated into human life and increasingly influence decision-making, it’s crucial to evaluate whether and to what extent they exhibit subjective preferences, opinions, and beliefs. These tendencies may stem from biases within the models, which may shape their behavior, influence the advice and recommendations they offer to users, and potentially reinforce certain viewpoints. This paper presents the Preference, Opinion, and Belief survey (POBs), a benchmark developed to assess LLMs’ subjective inclinations across societal, cultural, ethical, and personal domains. We applied our benchmark to evaluate leading open- and closed-source LLMs, measuring desired properties such as reliability, neutrality, and consistency. In addition, we investigated the effect of increasing the test-time compute, through reasoning and self-reflection mechanisms, on those metrics. While effective in other tasks, our results show that these mechanisms offer only limited gains in our domain. Furthermore, we reveal that newer model versions are becoming less consistent and more biased toward specific viewpoints, highlighting a blind spot and a concerning trend.POBS: https://ibm.github.io/POBS
Task-oriented LLM-based agents are increasingly used in domains with strict policies, such as refund eligibility or cancellation rules. The challenge lies in ensuring that the agent consistently adheres to these rules and policies, appropriately refusing any request that would violate them, while still maintaining a helpful and natural interaction. This calls for the development of tailored design and evaluation methodologies to ensure agent resilience against malicious user behavior. We propose a novel threat model that focuses on adversarial users aiming to exploit policy-adherent agents for personal benefit. To address this, we present CRAFT, a multi-agent red-teaming system that leverages policy-aware persuasive strategies to undermine a policy-adherent agent in a customer-service scenario, outperforming conventional jailbreak methods such as DAN prompts, emotional manipulation, and coercive. Building upon the existing Tau-bench benchmark, we introduce Tau-break, a complementary benchmark designed to rigorously assess the agent’s robustness against manipulative user behavior. Finally, we evaluate several straightforward yet effective defense strategies. While these measures provide some protection, they fall short, highlighting the need for stronger, research-driven safeguards to protect policy-adherent agents from adversarial attacks.
Following the advancement of large language models (LLMs), the development of LLM-based autonomous agents has become prevalent.As a result, the need to understand the security vulnerabilities of these agents has become a critical task. We examine how ReAct agents can be exploited using a straightforward yet effective method we refer to as the foot-in-the-door attack.Our experiments show that indirect prompt injection attacks, prompted by harmless and unrelated requests (such as basic calculations) can significantly increase the likelihood of the agent performing subsequent malicious actions.Our results show that once a ReAct agent’s thought includes a specific tool or action, the likelihood of executing this tool in the subsequent steps increases significantly, as the agent seldom re-evaluates its actions. Consequently, even random, harmless requests can establish a ‘foot-in-the-door’, allowing an attacker to embed malicious instructions into the agent’s thought process, making it more susceptible to harmful directives.To mitigate this vulnerability, we propose implementing a simple reflection mechanism that prompts the agent to reassess the safety of its actions during execution, which can help reduce the success of such attacks.
Large language models (LLMs) are increasingly used in business dialogue systems but they also pose security and ethical risks. Multi-turn conversations, in which context influences the model’s behavior, can be exploited to generate undesired responses. In this paper, we investigate the use of off-the-shelf LLMs in conversational red-teaming settings, where an attacker LLM attempts to elicit undesired outputs from a target LLM. Our experiments address critical questions and offer valuable insights regarding the effectiveness of using LLMs as automated red-teamers, shedding light on key strategies and usage approaches that significantly impact their performance.Our findings demonstrate that off-the-shelf models can serve as effective red-teamers, capable of adapting their attack strategies based on prior attempts. Allowing these models to freely steer conversations and conceal their malicious intent further increases attack success. However, their effectiveness decreases as the alignment of the target model improves.
As large language models become more prevalent, their possible harmful or inappropriate responses are a cause for concern. This paper introduces a unique dataset containing adversarial examples in the form of questions, we call AttaQ, designed to provoke such harmful or inappropriate responses. We assess the efficacy of our dataset by analyzing the vulnerabilities of various models when subjected to it. Additionally, we introduce a novel automatic approach for identifying and naming vulnerable semantic regions — input semantic areas for which the model is likely to produce harmful outputs. This is achieved through the application of specialized clustering techniques that consider both the semantic similarity of the input attacks and the harmfulness of the model’s responses.Automatically identifying vulnerable semantic regions enhances the evaluation of model weaknesses, facilitating targeted improvements to its safety mechanisms and overall reliability.
Similarity metrics for text corpora are becoming critical due to the tremendous growth in the number of generative models. These similarity metrics measure the semantic gap between human and machine-generated text on the corpus level. However, standard methods for evaluating the characteristics of these metrics have yet to be established. We propose a set of automatic measures for evaluating the characteristics of semantic similarity metrics for text corpora. Our measures allow us to sensibly compare and identify the strengths and weaknesses of these metrics. We demonstrate the effectiveness of our evaluation measures in capturing fundamental characteristics by comparing it to a collection of classical and state-of-the-art metrics. Our measures revealed that recent metrics are becoming better in identifying semantic distributional mismatch while classical metrics are more sensitive to perturbations in the surface text levels.
Data balancing is a known technique for improving the performance of classification tasks. In this work we define a novel balancing-viageneration framework termed BalaGen. BalaGen consists of a flexible balancing policy coupled with a text generation mechanism. Combined, these two techniques can be used to augment a dataset for more balanced distribution. We evaluate BalaGen on three publicly available semantic utterance classification (SUC) datasets. One of these is a new COVID-19 Q&A dataset published here for the first time. Our work demonstrates that optimal balancing policies can significantly improve classifier performance, while augmenting just part of the classes and under-sampling others. Furthermore, capitalizing on the advantages of balancing, we show its usefulness in all relevant BalaGen framework components. We validate the superiority of BalaGen on ten semantic utterance datasets taken from real-life goaloriented dialogue systems. Based on our results we encourage using data balancing prior to training for text classification tasks.