This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
George A.Vouros
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
In the past, we have succesfully used machine learning approaches for sentiment analysis. In the course of those experiments, we observed that our machine learning method, although able to cope well with figurative language could not always reach a certain decision about the polarity orientation of sentences, yielding erroneous evaluations. We support the conjecture that these cases bearing mild figurativeness could be better handled by a rule-based system. These two systems, acting complementarily, could bridge the gap between machine learning and rule-based approaches. Experimental results using the corpus of the Affective Text Task of SemEval 07, provide evidence in favor of this direction.
This paper describes the work that was undertaken in the Glossasoft project in the area of terminology management. Some of the draw-backs of existing terminology management systems are outlined and an alternative approach to maintaining terminological data is proposed. The approach which we advocate relies on knowledge-based representation techniques. These are used to model conceptual knowledge about the terms included in the database, general knowledge about the subject domain, application-specific knowledge, and - of course - language-specific terminological knowledge. We consider the multifunctionality of the proposed architecture to be one of its major advantages. To illustrate this, we outline how the knowledge representation scheme, which we suggest, could be drawn upon in message generation and machine-assisted translation.