Geoffrey Tso


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
DERA: Enhancing Large Language Model Completions with Dialog-Enabled Resolving Agents
Varun Nair | Elliot Schumacher | Geoffrey Tso | Anitha Kannan
Proceedings of the 6th Clinical Natural Language Processing Workshop

Large language models (LLMs) have emerged as valuable tools for many natural language understanding tasks. In safety-critical applications such as healthcare, the utility of these models is governed by their ability to generate factually accurate and complete outputs. In this work, we present dialog-enabled resolving agents (DERA). DERA is a paradigm made possible by the increased conversational abilities of LLMs. It provides a simple, interpretable forum for models to communicate feedback and iteratively improve output. We frame our dialog as a discussion between two agent types – a Researcher, who processes information and identifies crucial problem components, and a Decider, who has the autonomy to integrate the Researcher’s information and makes judgments on the final output.We test DERA against three clinically-focused tasks, with GPT-4 serving as our LLM. DERA shows significant improvement over the base GPT-4 performance in both human expert preference evaluations and quantitative metrics for medical conversation summarization and care plan generation. In a new finding, we also show that GPT-4’s performance (70%) on an open-ended version of the MedQA question-answering (QA) dataset (Jin 2021; USMLE) is well above the passing level (60%), with DERA showing similar performance. We will release the open-ended MedQA dataset.