Gavin Kerrigan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Differentially Private Language Models Benefit from Public Pre-training
Gavin Kerrigan | Dylan Slack | Jens Tuyls
Proceedings of the Second Workshop on Privacy in NLP

Language modeling is a keystone task in natural language processing. When training a language model on sensitive information, differential privacy (DP) allows us to quantify the degree to which our private data is protected. However, training algorithms which enforce differential privacy often lead to degradation in model quality. We study the feasibility of learning a language model which is simultaneously high-quality and privacy preserving by tuning a public base model on a private corpus. We find that DP fine-tuning boosts the performance of language models in the private domain, making the training of such models possible.