Gautam Jajoo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Task Facet Learning: A Structured Approach To Prompt Optimization
Gurusha Juneja | Gautam Jajoo | Hua Li | Jian Jiao | Nagarajan Natarajan | Amit Sharma
Findings of the Association for Computational Linguistics: ACL 2025

Given a task in the form of a basic description and its training examples, prompt optimization is the problem of synthesizing the given information into a text prompt for a large language model. Humans solve this problem by also considering the different facets that define a task (e.g., counter-examples, explanations, analogies) and including them in the prompt. However, it is unclear whether existing algorithmic approaches, based on iteratively editing a given prompt or automatically selecting a few in-context examples, can cover the multiple facets required to solve a complex task. In this work, we view prompt optimization as that of learning multiple facets of a task from a set of training examples. We exploit structure in the prompt optimization problem and break down a prompt into loosely coupled semantic sections. The proposed algorithm, UniPrompt, (1) clusters the input space and uses clustered batches so that each batch likely corresponds to a different facet of the task, and (2) utilizes a feedback mechanism to propose adding, editing or deleting a section, which in turn is aggregated over a batch to capture generalizable facets. Empirical evaluation on multiple datasets and a real-world task shows that prompts generated using UniPrompt obtain higher accuracy than human-tuned prompts and those from state-of-the-art methods. In particular, our algorithm can generate long, complex prompts that existing methods are unable to generate.