Gauri Takalikar


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Challenges in Adapting Multilingual LLMs to Low-Resource Languages using LoRA PEFT Tuning
Omkar Khade | Shruti Jagdale | Abhishek Phaltankar | Gauri Takalikar | Raviraj Joshi
Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025)

Large Language Models (LLMs) have demonstrated remarkable multilingual capabilities, yet challenges persist in adapting these models for low-resource languages. In this study, we investigate the effects of Low-Rank Adaptation (LoRA) Parameter-Efficient Fine-Tuning (PEFT) on multilingual Gemma models for Marathi, a language with limited resources. Using a translated Alpaca dataset with 52,000 instruction-response pairs, our findings reveal that while evaluation metrics often show a performance decline post-fine-tuning, manual assessments frequently suggest that the fine-tuned models outperform their original counterparts. The observations indicate improvements in target language generation capabilities but a reduction in reasoning abilities following language adaptation. These results underscore the need for improved evaluation methodologies and the creation of high-quality native datasets to accurately assess language-specific model performance in low-resource settings.