Gary Marcus


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
A Gentle Introduction to Deep Nets and Opportunities for the Future
Kenneth Church | Valia Kordoni | Gary Marcus | Ernest Davis | Yanjun Ma | Zeyu Chen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

The first half of this tutorial will make deep nets more accessible to a broader audience, following “Deep Nets for Poets” and “A Gentle Introduction to Fine-Tuning.” We will also introduce GFT (general fine tuning), a little language for fine tuning deep nets with short (one line) programs that are as easy to code as regression in statistics packages such as R using glm (general linear models). Based on the success of these methods on a number of benchmarks, one might come away with the impression that deep nets are all we need. However, we believe the glass is half-full: while there is much that can be done with deep nets, there is always more to do. The second half of this tutorial will discuss some of these opportunities.