Gaeul Kwon


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
On the Versatility of Sparse Autoencoders for In-Context Learning
Ikhyun Cho | Gaeul Kwon | Julia Hockenmaier
Findings of the Association for Computational Linguistics: EMNLP 2025

Sparse autoencoders (SAEs) are emerging as a key analytical tool in the field of mechanistic interpretability for large language models (LLMs). While SAEs have primarily been used for interpretability, we shift focus and explore an understudied question: “Can SAEs be applied to practical tasks beyond interpretability?” Given that SAEs are trained on billions of tokens for sparse reconstruction, we believe they can serve as effective extractors, offering a wide range of useful knowledge that can benefit practical applications. Building on this motivation, we demonstrate that SAEs can be effectively applied to in-context learning (ICL). In particular, we highlight the utility of the SAE-reconstruction loss by showing that it provides a valuable signal in ICL—exhibiting a strong correlation with LLM performance and offering a powerful unsupervised approach for prompt selection. These findings underscore the versatility of SAEs and reveal their potential for real-world applications beyond interpretability. Our code is available at https://github.com/ihcho2/SAE-GPS.

2024

pdf bib
Tutor-ICL: Guiding Large Language Models for Improved In-Context Learning Performance
Ikhyun Cho | Gaeul Kwon | Julia Hockenmaier
Findings of the Association for Computational Linguistics: EMNLP 2024

There has been a growing body of work focusing on the in-context learning (ICL) abilities of large language models (LLMs). However, it is an open question how effective ICL can be. This paper presents Tutor-ICL, a simple prompting method for classification tasks inspired by how effective instructors might engage their students in learning a task. Specifically, we propose presenting exemplar answers in a *comparative format* rather than the traditional single-answer format. We also show that including the test instance before the exemplars can improve performance, making it easier for LLMs to focus on relevant exemplars. Lastly, we include a summarization step before attempting the test, following a common human practice. Experiments on various classification tasks, conducted across both decoder-only LLMs (Llama 2, 3) and encoder-decoder LLMs (Flan-T5-XL, XXL), show that Tutor-ICL consistently boosts performance, achieving up to a 13.76% increase in accuracy.