Gabrielle Kaili-May Liu


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
MDCure: A Scalable Pipeline for Multi-Document Instruction-Following
Gabrielle Kaili-May Liu | Bowen Shi | Avi Caciularu | Idan Szpektor | Arman Cohan
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-document (MD) processing is crucial for LLMs to handle real-world tasks such as summarization and question-answering across large sets of documents. While LLMs have improved at processing long inputs, MD contexts still present unique difficulties, including management of inter-document dependencies, redundancy, and incoherent structures. To address this challenge, we introduce MDCure, a scalable and effective instruction data generation framework to enhance the MD capabilities of LLMs without the computational cost of pre-training or reliance on human-annotated data. MDCure generates high-quality synthetic MD instruction data over sets of articles via targeted prompts. We also introduce MDCureRM, a cost-effective, MD-specific reward model to score and filter generated data based on their training utility for MD settings. MDCure is compatible with open- and closed-source models in addition to policy optimization methods such as PPO, enabling even small open- source models to surpass proprietary LLMs as strong generators of high-quality MD instruction data without further data filtering. With MDCure, we fine-tune a wide variety of LLMs up to 70B parameters in size from the FlanT5, Qwen2, and LLAMA3.1 model families. Extensive evaluations on a wide range of MD and long-context benchmarks spanning various tasks and domains show MDCure consistently improves performance over pre-trained baselines and base models by up to 75.1%.

pdf bib
MetaFaith: Faithful Natural Language Uncertainty Expression in LLMs
Gabrielle Kaili-May Liu | Gal Yona | Avi Caciularu | Idan Szpektor | Tim G. J. Rudner | Arman Cohan
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

A critical component in the trustworthiness of LLMs is reliable uncertainty communication, yet LLMs often use assertive language when conveying false claims, leading to over-reliance and eroded trust. We present the first systematic study of _faithful confidence calibration_ of LLMs, benchmarking models’ ability to use linguistic expressions of uncertainty that _faithfully reflect_ their intrinsic uncertainty, across a comprehensive array of models, datasets, and prompting strategies. Our results demonstrate that LLMs largely fail at this task, and that existing interventions are insufficient: standard prompt approaches provide only marginal gains, and existing, factuality-based calibration techniques can even harm faithful calibration. To address this critical gap, we introduce MetaFaith, a novel prompt-based calibration approach inspired by human metacognition. We show that MetaFaith robustly improves faithful calibration across diverse models and task domains, enabling up to 61% improvement in faithfulness and achieving an 83% win rate over original generations as judged by humans.