This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
GabrielSynnaeve
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Transformer encoders are critical for a wide range of Natural Language Processing (NLP) tasks, yet their compute–efficiency remains poorly understood. We present the first comprehensive empirical investigation of compute-optimal pretraining for encoder transformers using the Masked Language Modeling (MLM) objective. Across hundreds of carefully controlled runs we vary model size, data size, batch size, learning rate, and masking ratio, with increasing compute budget. The compute-optimal data-to-model ratio of Transformer encoder models is 10 to 100 times larger than the ratio of auto-regressive models. Using these recipes, we train OptiBERT, a family of compute-optimal BERT-style models that matches or surpasses leading baselines—including ModernBERT and NeoBERT—on GLUE and MTEB while training with dramatically less FLOPS.
We introduce SpiRit-LM, a foundation multimodal language model that freely mixes text and speech. Our model is based on a 7B pretrained text language model that we extend to the speech modality by continuously training it on text and speech units. Speech and text sequences are concatenated as a single stream of tokens, and trained with a word-level interleaving method using a small automatically curated speech-text parallel corpus. SpiRit-LM comes in two versions: a Base version that uses speech phonetic units (HuBERT) and an Expressive version that models expressivity using pitch and style units in addition to the phonetic units. For both versions, the text is encoded with subword BPE tokens. The resulting model displays both the semantic abilities of text models and the expressive abilities of speech models. Additionally, we demonstrate that SpiRit-LM can learn new tasks in a few-shot fashion across modalities (i.e., ASR, TTS, Speech Classification). We make available model weights and inference code.1,2
In NLP, text language models based on words or subwords are known to outperform their character-based counterparts. Yet, in the speech community, the standard input of spoken LMs are 20ms or 40ms-long discrete units (shorter than a phoneme). Taking inspiration from word-based LM, we introduce a Generative Spoken Language Model (GSLM) based on word-size continuous-valued audio tokens that can generate diverse and expressive language output. This is obtained by replacing lookup table for lexical types with a Lexical Embedding function, the cross entropy loss by a contrastive loss, and multinomial sampling by k-NN sampling. The resulting model is the first generative language model based on word-size continuous tokens. Its performance is on par with discrete unit GSLMs regarding generation quality as measured by automatic metrics and subjective human judgements. Moreover, it is five times more memory efficient thanks to its large 200ms units. In addition, the embeddings before and after the Lexical Embedder are phonetically and semantically interpretable.
Generative Spoken Language Modeling research focuses on optimizing speech Language Models (LMs) using raw audio recordings without accessing any textual supervision. Such speech LMs usually operate over discrete units obtained from quantizing internal representations of self-supervised models. Although such units show impressive modeling results, their robustness capabilities have not been extensively investigated. This work focuses on improving the robustness of discrete input representations for generative spoken language modeling. First, we formally define how to measure the robustness of such representations to various signal variations that do not alter the spoken information (e.g., time-stretch). Next, we empirically demonstrate how current state-of-the-art representation models lack robustness to such variations. To overcome this, we propose an effective and efficient method to learn robust discrete speech representation for generative spoken language modeling. The proposed approach is based on applying a set of signal transformations to the speech signal and optimizing the model using an iterative pseudo-labeling scheme. Our method significantly improves over the evaluated baselines when considering encoding and modeling metrics. We additionally evaluate our method on the speech-to-speech translation task, considering Spanish-English and French-English translations, and show the proposed approach outperforms the evaluated baselines.