This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Fu-AnChao
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Prior efforts in building computer-assisted pronunciation training (CAPT) systems often treat automatic pronunciation assessment (APA) and mispronunciation detection and diagnosis (MDD) as separate fronts: the former aims to provide multiple pronunciation aspect scores across diverse linguistic levels, while the latter focuses instead on pinpointing the precise phonetic pronunciation errors made by non-native language learners. However, it is generally expected that a full-fledged CAPT system should perform both functionalities simultaneously and efficiently. In response to this surging demand, we in this work first propose HMamba, a novel CAPT approach that seamlessly integrates APA and MDD tasks in parallel. In addition, we introduce a novel loss function, decoupled cross-entropy loss (deXent), specifically tailored for MDD to facilitate better-supervised learning for detecting mispronounced phones, thereby enhancing overall performance. A comprehensive set of empirical results on the speechocean762 benchmark dataset demonstrates the effectiveness of our approach on APA. Notably, our proposed approach also yields a considerable improvement in MDD performance over a strong baseline, achieving an F1-score of 63.85%. Our codes are made available at https://github.com/Fuann/hmamba
Automated speaking assessment (ASA) typically involves automatic speech recognition (ASR) and hand-crafted feature extraction from the ASR transcript of a learner’s speech. Recently, self-supervised learning (SSL) has shown stellar performance compared to traditional methods. However, SSL-based ASA systems are faced with at least three data-related challenges: limited annotated data, uneven distribution of learner proficiency levels and non-uniform score intervals between different CEFR proficiency levels. To address these challenges, we explore the use of two novel modeling strategies: metric-based classification and loss re-weighting, leveraging distinct SSL-based embedding features. Extensive experimental results on the ICNALE benchmark dataset suggest that our approach can outperform existing strong baselines by a sizable margin, achieving a significant improvement of more than 10% in CEFR prediction accuracy.
Due to the surge in global demand for English as a second language (ESL), developments of automated methods for grading speaking proficiency have gained considerable attention. This paper aims to present a computerized regime of grading the spontaneous spoken language for ESL learners. Based on the speech corpus of ESL learners recently collected in Taiwan, we first extract multi-view features (e.g., pronunciation, fluency, and prosody features) from either automatic speech recognition (ASR) transcription or audio signals. These extracted features are, in turn, fed into a tree-based classifier to produce a new set of indicative features as the input of the automated assessment system, viz. the grader. Finally, we use different machine learning models to predict ESL learners’ respective speaking proficiency and map the result into the corresponding CEFR level. The experimental results and analysis conducted on the speech corpus of ESL learners in Taiwan show that our approach holds great potential for use in automated speaking assessment, meanwhile offering more reliable predictive results than the human experts.